**JOM 24010PC** 

# **Preliminary Communication**

New electron rich  $\operatorname{Ru}_{3}P_{4}$ and  $\operatorname{Ru}_{4}P_{3}$  phosphido clusters: synthesis and molecular structures of the expanded triangular and butterfly clusters  $(\mu_{3}-H)\operatorname{Ru}_{3}(CO)_{6}(\mu-PPh_{2})_{3}[\mu-P(Ph)C_{6}H_{4}]$ and  $(\mu-H)_{2}\operatorname{Ru}_{4}(CO)_{10}(\mu_{3}-PPh)(\mu PPh_{2})_{2}$  \*

John F. Corrigan, Simon Doherty, Nicholas J. Taylor and Arthur J. Carty

Guelph-Waterloo Centre for Graduate Work in Chemistry, Waterloo Campus, Department of Chemistry, University of Waterloo, Waterloo, Ont. N2L 3G1 (Canada)

#### Ermete Boroni and Antonio Tiripicchio

Istituto di Chimica Generale ed Inorganica, Università di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, I-43100 Parma (Italy)

(Received April 14, 1993; in revised form July 6, 1993)

#### Abstract

Reaction of Ru<sub>3</sub>(CO)<sub>12</sub> with Ph<sub>2</sub>PPPh<sub>2</sub> in refluxing n-heptane affords the 50-electron cluster  $(\mu_3$ -H)Ru<sub>3</sub>(CO)<sub>6</sub>( $\mu$ -PPh<sub>2</sub>)<sub>3</sub>[ $\mu$ -P(Ph)C<sub>6</sub>H<sub>4</sub>] 1 containing a  $\mu_3$ -ligated hydride and an orthometalated phenyl ring. The photolytic reaction of Ph<sub>2</sub>PH with electron precise Ru<sub>4</sub>(CO)<sub>13</sub>-( $\mu_3$ -PPh) yields the 64-electron butterfly cluster ( $\mu$ -H)<sub>2</sub>Ru<sub>4</sub>(CO)<sub>10</sub>( $\mu_3$ -PPh)( $\mu$ -PPh<sub>2</sub>)<sub>2</sub> 2. Single crystal analyses revealed that both 1 and 2 possess expanded metal atom frameworks, a result of their electronic oversaturation.

Several examples of electron rich  $M_3$ ,  $M_4$  and  $M_5$  clusters with expanded metal frameworks have recently been described [1]. The unusual patterns of M–M bond elongation in these molecules result from a small HOMO–LUMO gap and the population of molecular orbitals antibonding with respect to the core [2]. Interest in these electron rich clusters stems not only from their novel structural features but from an expectation of enhanced chemical reactivity associated with two electron processes [3]. In this communication we de-

scribe two new electron rich phosphido clusters  $(\mu_3 - H)Ru_3(CO)_6(\mu - PPh_2)_3[\mu - P(Ph)C_6H_4]$  1 and  $(\mu - H)_2$ Ru<sub>4</sub>(CO)<sub>10</sub> $(\mu_3 - PPh)(\mu - PPh_2)_2$  2 with distinctive expanded triangular and butterfly frameworks.

Heating a n-heptane solution (220 mL) of  $\text{Ru}_3(\text{CO})_{12}$ (1.00 g, 1.56 mmol) and Ph<sub>2</sub>PPPh<sub>2</sub> (1.80 g, 4.86 mmol) at reflux for 15 min afforded the new cluster 1<sup>†</sup> in 20% yield after chromatographic workup and fractional crystallisation from n-heptane-CH<sub>2</sub>Cl<sub>2</sub> (10:1). This reaction also provides a useful route to the electron-rich system  $\text{Ru}_4(\text{CO})_{10}(\mu\text{-PPh}_2)_4$  [1d] (17%) and to  $\operatorname{Ru}_{2}(\operatorname{CO})_{6}(\mu-\operatorname{PPh}_{2})_{2}$  [4] (45%). The <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 1 consisted of three resonances all at high field compared to normal  $\mu$ -PPh<sub>2</sub> chemical shifts in electron precise ruthenium clusters [5]. Although these shifts were indicative of elongated Ru-Ru bonds, an X-ray analysis<sup>††</sup> was necessary to establish the full details of the molecular structure (Fig. 1). The Ru<sub>3</sub> framework is quite unusual in that all three of the metal-metal bonds are exceptionally long, with the average Ru-Ru distance [3.129(1) Å] fully 0.25 Å longer than the standard distance in  $Ru_3(CO)_{12}$  (2.85 Å) [6]. Three of the phosphorus atoms [P(1), P(2), P(3)] lie essentially in the Ru<sub>3</sub> plane. The fourth phosphido group is orthometalated on one ring [7] and this  $\mu_3$ - $P(Ph)C_6H_4$  ligand lies approximately perpendicular to the  $Ru_3P_3$  framework with a pseudo plane of symmetry bisecting the Ru(1)-Ru(2) vector and passing through Ru(3). The 50-electron count associated with 1 presumably accounts for the elongation of the Ru-Ru vectors. Remarkably, there are few other published

Correspondence to: Prof. A.J. Carty.

<sup>\*</sup> Dedicated to Prof. Michael F. Lappert on the occasion of his 65th birthday.

<sup>&</sup>lt;sup>†</sup> Selected data for 1: IR:  $\nu$ (CO)cm<sup>-1</sup> (CH<sub>2</sub>Cl<sub>2</sub>) 2048s, 2033s, 2015m, 1975s and 1956m. NMR: <sup>31</sup>P{<sup>1</sup>H} 81.0 MHz, CDCl<sub>3</sub>)  $\delta$  45.3 (dt, P<sub>1</sub>, P<sub>4</sub>, <sup>2</sup>J<sub>P1P4</sub> = 83.8 Hz, <sup>2</sup>J<sub>P2/3P4</sub> = 11.9 Hz), 26.2 (dd, P<sub>2/3</sub>, <sup>2</sup>J<sub>P1P2/3</sub> = 93.4 Hz, <sup>2</sup>J<sub>P2/3P1</sub> = 11.9 Hz), -89.5 (dt, P<sub>1</sub>, <sup>2</sup>J<sub>P1P2/3</sub> = 93.5 Hz, <sup>2</sup>J<sub>P1P4</sub> = 83.9 Hz) ppm. <sup>1</sup>H (200 MHz, CDCl<sub>3</sub>)  $\delta$  7.9-5.5 ppm (mult., H phenyl), -17.9 (mult.,  $\mu_3$ -H) ppm. Anal. Calcd. for C<sub>54</sub>H<sub>40</sub>O<sub>6</sub>P<sub>4</sub>Ru<sub>3</sub>: C, 53.51; H, 3.33. Found: C, 53.18; H, 3.09%.

<sup>&</sup>lt;sup>††</sup>Crystal data for 1: red platelets from the slow evaporation of a  $C_7H_{16}-CH_2Cl_2$  solution at 295 K.  $C_{54}H_{40}O_6P_4Ru_3$ , M = 1212.0, monoclinic, space group C2/c, a = 21.461(3), b = 20.290(2), c = 24.275(3) Å,  $\beta = 108.79(1)^\circ$ , V = 10007(2) Å<sup>3</sup>, Z = 8,  $D_c = 1.609$  g cm<sup>-3</sup>, F(000) = 4832,  $\mu$ (Mo-K $\alpha$ ) = 10.71 cm<sup>-1</sup>. The structure was solved (Patterson, Fourier techniques) and refined (full-matrix least-squares, all non-hydrogen atoms anisotropic) on the basis of 7626 observed [ $F > 6.0\sigma(F)$ ] reflections measured at 200 K on an LT-2 equipped Siemens R3m/V diffractometer ( $2\theta_{max} = 50.0^\circ$ ). The final R and Rw values were 2.20 and 2.52% respectively.



Fig. 1. The molecular structure of  $(\mu_3$ -H)Ru\_3(CO)\_6(\mu-PPh\_2)\_5[\mu-P(Ph)C\_6H\_4] 1 illustrating the orthometalated phenyl ring and the  $\mu_3$ -ligated hydride. For clarity, only the *ipso* carbon atoms of the non interacting phenyl rings are shown. Selected bond lengths (Å) and angles (°): Ru(1)-Ru(2) 3.034(1); Ru(1)-Ru(3) 3.207(1); Ru(2)-Ru(3) 3.146(1); Ru(1)-P(1) 2.395(1); Ru(2)-P(1) 2.374(1); Ru(2)-P(2) 2.393(1); Ru(3)-P(2) 2.349(1); Ru(1)-P(3) 2.390(1); Ru(3)-P(3) 2.363(1); Ru(1)-P(4) 2.379(1); Ru(2)-P(4) 2.402(1); Ru(3)-C(44) 2.151(3); Ru(1)-H(1) 1.87; Ru(2)-H(1) 1.84; Ru(3)-H(1) 2.02; Ru(1)-H(1)-Ru(2) 110; Ru(1)-H(1)-Ru(3) 111; Ru(2)-H(1)-Ru(3) 109; P(4)-C(43)-C(44) 115.9(2).

reports of 50-electron trinuclear ruthenium clusters [1a,1b,1h,8]. Of these Ru<sub>3</sub>(CO)<sub>9</sub>[ $\mu$ -PPh(C<sub>5</sub>H<sub>4</sub>N)] [1a], Ru<sub>3</sub>(CO)<sub>9</sub>( $\mu$ <sub>3</sub>-C<sub>2</sub>R)( $\mu$ -PPh<sub>2</sub>) [8a] and ( $\mu$ -H)<sub>2</sub>(H)<sub>2</sub>Ru<sub>3</sub>-(CO)<sub>8</sub>( $\mu$ -P<sup>t</sup>Bu<sub>2</sub>)<sub>2</sub> [8b] have an "open" metal-metal edge whereas only the recently reported Ru<sub>3</sub>(CO)<sub>7</sub>( $\mu$ -PPh<sub>2</sub>)<sub>2</sub>( $\mu$ -Cl) [1b] and Ru<sub>3</sub>(CO)<sub>6</sub>( $\mu$ <sub>3</sub>- $\eta$ <sup>2</sup>-PhPpy)( $\mu$ -PPh<sub>2</sub>)<sub>3</sub> [1h] display an elongation of all three Ru-Ru bonds in a similar pattern to that observed in 1. The bond lengths in Ru<sub>3</sub>(CO)<sub>7</sub>( $\mu$ -PPh<sub>2</sub>)<sub>3</sub>( $\mu$ -Cl) [2.9293(8)-3.2222(7) Å] encompass a wider range than in 1 although the average Ru-Ru distance is quite similar in both molecules.





The 62-electron butterfly cluster  $\operatorname{Ru}_4(\operatorname{CO})_{13}(\mu_3\operatorname{-PPh})$ 3 obtained from the thermolysis of  $(\mu\operatorname{-H})\operatorname{Ru}_3(\operatorname{CO})_{10}(\mu\operatorname{-PPh}_2)$  [9a] has a rich and diverse chemistry [9] which includes the facile activation of dihydrogen [9c] and of reactive X-H bonds and the oligomerisation of alkynes and diynes [9d]. Irradiation of 3 (0.120 g, 0.137 mmol; 450 W Hg lamp) in the presence of diphenylphosphine (50  $\mu$ l, 0.287 mmol) in n-hexane (120 ml) for 30 min afforded 2 as the major product (35%) after chromatographic workup (Scheme 1). Once again the presence of a high field resonance in the <sup>31</sup>P{<sup>1</sup>H} NMR spectrum <sup>†††</sup> was indicative of elongated Ru-Ru interactions and a single crystal X-ray analysis <sup>‡</sup> confirmed the presence of an expanded molecular framework (Fig. 2).

Compound 2 crystallises with two independent but essentially identical molecules in the asymmetric unit. Bond lengths and angles quoted refer to molecule 1. The butterfly cluster 2 contains a  $\mu_3$ -PPh, two  $\mu_2$ -PPh<sub>2</sub> and two  $\mu_2$ -H ligands which, in addition to the ten carbonyl groups, contribute to the 64-electron count, two in excess of that predicted by the EAN rule. The reaction has thus led to the oxidative addition of two P-H bonds onto the cluster framework. Close examination of the molecular framework reveals three elongated and two "normal" Ru-Ru interactions [Ru(11)-

<sup>&</sup>lt;sup>+++</sup> Selected data for 2:  $\nu$ (CO) cm<sup>-1</sup> (C<sub>6</sub>H<sub>12</sub>) 2096 w, 2083 m, 2042 vs, 2033 m, 2027 s, 2014 w, 1987 w, 1966 w, 1961 w. NMR: <sup>31</sup>P{<sup>1</sup>H} (101.3 MHz, CDCl<sub>3</sub>)  $\delta$  243.0 (t, P<sub>1</sub>, <sup>2</sup>J<sub>PP</sub> = 103.2 Hz), 71.4 (d, P<sub>2/3</sub>, <sup>2</sup>J<sub>PP</sub> = 102.2 Hz) ppm. <sup>1</sup>H (200 MHz. CDCl<sub>3</sub>)  $\delta$  8.4–7.2 (mult., H phenyl), -19.18 (dt,  $\mu$ -H, <sup>2</sup>J<sub>PH</sub> = 15.0 Hz, <sup>2</sup>J<sub>P2/3H</sub> = 3.0 Hz). Anal. Calcd. for C<sub>40</sub>H<sub>27</sub>O<sub>10</sub>P<sub>3</sub>Ru<sub>4</sub>: C, 41.25; H, 2.34. Found: C, 41.28; H. 2.26%.

<sup>&</sup>lt;sup>‡</sup> Crystal data for 2: deep orange prisms from C<sub>7</sub>H<sub>16</sub>-C<sub>7</sub>H<sub>8</sub> at 263 K. C<sub>40</sub>H<sub>27</sub>O<sub>10</sub>P<sub>3</sub>Ru<sub>4</sub>·0.75C<sub>7</sub>H<sub>8</sub>, M = 1233.9, triclinic, space group P1, a = 12.642(2), b = 15.255(2), c = 24.692(3) Å, a = 89.62(2),  $\beta = 84.26(2)$ ,  $\gamma = 84.46(2)^{\circ}$ , V = 4715.9(10) Å<sup>3</sup>, Z = 4,  $D_c = 1.738$  g cm<sup>-3</sup>, F(000) = 2422,  $\mu$ (Mo-K $\alpha$ ) = 14.13 cm<sup>-1</sup>. The structure was solved (Patterson and Fourier) and refined (blocked-matrix least-squares, all non-hydrogen atoms anisotropic) on the basis of 10961 observed [ $F > 6.0\sigma(F)$ ] reflections measured at 200 K on an LT-2 equipped Siemens R3m/V diffractometer ( $2\theta_{max} = 46.0^{\circ}$ ). The hydride ligands were fixed in their found positions with refined isotropic U. The final R and Rw values were 2.28 and 2.68% respectively.



Fig. 2. A perspective view of one of the independent molecules of  $(\mu$ -H)<sub>2</sub>Ru<sub>4</sub>(CO)<sub>10</sub> $(\mu_3$ -PPh) $(\mu$ -PPh<sub>2</sub>)<sub>2</sub> 2 (molecule 1). Only the *ipso* carbon atoms of the phenyl rings are illustrated. Selected bond lengths (Å) and angles (°): Ru(11)-Ru(12) 2.977(1); Ru(11)-Ru(13) 3.232(1); Ru(11)-Ru(14) 3.159(1); Ru(12)-Ru(14) 3.012(1); Ru(13)-Ru(14) 3.177(1); Ru(11)-P(11) 2.293(1); Ru(12)-P(11) 2.317(1); Ru(14)-P(11) 2.291(1); Ru(11)-H(11) 1.83; Ru(12)-H(11) 1.79; Ru(12)-H(12) 1.72; Ru(14)-H(12) 1.88; Ru(11)-H(11)-Ru(12) 111; Ru(12)-H(12)-Ru(14) 114.

Ru(13) = 3.232(1), Ru(11) - Ru(14) = 3.159(1), Ru(13) -Ru(14) = 3.177(1), Ru(11)-Ru(12) = 2.977(1) and Ru(12)-Ru(14) = 3.012(1) Å]. This pattern of three long/two normal bonds has only been previously observed for the flat butterfly or rhomboidal clusters  $Ru_4(CO)_{13}(\mu-PR_2)_2$  [1d] and for  $(\mu-H)_2Ru_4(CO)_8$ - $[CH_3C=C(H)C(H)=N^{i}Pr]_2$  [1e] which have essentially planar molecular frameworks. In 2 the dihedral angle between the Ru(11)-Ru(12)-Ru(14) and Ru(11)-Ru(13)-(Ru14) planes is 113.9°. The phosphinidene fragment, which was bonded to one hinge and two wingtip metal atoms in 3, now caps a closed triangular face in 2. Although a butterfly arrangement of ruthenium atoms is retained in the transformation of 3 to 2, substantial rearrangement of the metal-metal interactions has taken place since the  $\mu_3$ -PPh ligand is no longer bound within the butterfly cavity.

The structural characterisation of 1 and 2 together with other recent observations [1] establishes that polyphosphido carbonyl clusters in general exhibit unusual electronic and structural features. Furthermore, recent evidence that the related class of 64-electron phosphido clusters  $\text{Ru}_4(\text{CO})_{13}(\mu-\text{PR}_2)_2$  undergo facile CO loss and intramolecular ligand activation chemistry [10] suggests that framework-electronic structure-reactivity relationships of M<sub>3</sub> and M<sub>4</sub> clusters bearing  $\pi$ -donor ligands deserves further attention.

### Acknowledgements

The support of the Natural Sciences and Engineering Research Council of Canada for operating (AJC), equipment (AJC) and scholarship (JFC) grants, and NATO for a travel grant (to AJC and AT) is greatly appreciated. E. Boroni acknowledges the support of NSERC and the University of Waterloo for a 4 month research leave in Canada.

## References

- (a) N. Lugan, G. Lavigne, J.-J. Bonnett, R. Rean, D. Neibecker and I. Tkatchenko, J. Am Chem. Soc., 110 (1988) 5369; (b) J.A. Cabeza, F.J. Lahoz and A. Martin, Organometallics, 11 (1992) 2754; (c) A.A. Cherkas, N.J. Taylor and A.J. Carty, J. Chem. Soc., Chem. Commun., (1990) 385; (d) G. Hogarth, J.A. Phillips, F. van Gastel, N.J. Taylor, T.B. Marder and A.J. Carty, J. Chem. Soc., Chem. Commun., (1988) 1570; (e) W.P. Mul, C.J. Elsevier, M. van Leijen, K. Vrieze, W. Smeets and A.L. Spek, Organometallics, 11 (1992) 1877; (f) D.R. Pergola, L. Garlaschelli, C. Mealli, D.M. Proserpio and P. Zanello, J. Cluster Sci., 1 (1990) 93; (g) C.J. Adams, M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, J. Chem. Soc., Chem. Commun., (1992) 1314; (h) N. Lugan, P.-L. Fabre, D. de Montauzon, G. Lavigne, J.-J. Bonnet, J.-Y. Saillard and J.-F. Halet, Inorg. Chem., 32 (1993) 1363.
- (a) C. Mealli and D.M. Proserpio, J. Am. Chem. Soc., 112 (1990) 5484;
  (b) D.J. Underwood, R. Hoffmann, K. Tatsumi, A. Nakamura and Y. Yamamoto, J. Am. Chem. Soc., 107 (1985) 5968;
  (c) C. Mealli, J. Am. Chem. Soc., 107 (1985) 2245.
- 3 (a) G. Hogarth, N. Hadj-Bagheri, N.J. Taylor and A.J. Carty, J. Chem. Soc., Chem. Commun., (1990) 1314; (b) C.J. Adams, M.I. Bruce, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Trans., (1992) 3057.
- 4 (a) Z. He, N. Lugan, D. Neibecker, R. Mathieu and J.-J. Bonnett, J. Organomet. Chem., 426 (1992) 247; (b) L.M. Bullock, J.S. Field, R.J. Haines, E. Minshall, M.H. Moore, F. Mulla, D.N. Smit and L.M. Steer, J. Organomet. Chem., 381 (1990) 429.
- 5 A.J. Carty, S.A. MacLaughlin and D. Nucciarone, in J.G. Verkade and L.D. Quinn (eds.), *Phosphorus-31 NMR Spectroscopy in Stere*ochemical Analysis; Organic Compounds and Metal Complexes, VCH Publishers, New York, 1987, Chap. 16.
- 6 M.R. Churchill, F.J. Hollander and J.P. Hutchinson, *Inorg. Chem.*, 16 (1977) 2655.
- 7 A.J. Deeming, S.E. Kabir, N.I. Powell, P.A. Bates and M.B. Hurthouse, J. Chem. Soc., Dalton Trans., (1987) 1529.
- 8 (a) A.J. Carty, S.A. MacLaughlin and N.J. Taylor, J. Organomet. Chem., 326 (1981) C27; (b) A.A. Arif, T.A. Bright, R.A. Jones and C.M. Nunn, J. Am. Chem. Soc., 110 (1988) 6894.
- 9 (a) A.A. Cherkas, J.F. Corrigan, S. Doherty, S.A. MacLaughlin, F. van Gastel, N.J. Taylor and A.J. Carty, *Inorg. Chem.*, 32 (1993) 1662; (b) J.F. Corrigan, S. Doherty, N.J. Taylor and A.J. Carty, J. *Chem. Soc., Chem. Commun.*, (1991) 1640; (c) F. van Gastel, J.F. Corrigan, S. Doherty, N.J. Taylor and A.J. Carty, *Inorg. Chem.*, 31 (1992) 4492; (d) J.F. Corrigan, S. Doherty, N.J. Taylor and A.J. Carty, *Organometallics*, 11 (1992) 3160.
- 10 (a) J.F. Corrigan, S. Doherty, N.J. Taylor and A.J. Carty, J. Am. Chem. Soc., 114 (1992) 7557; (b) J.F. Corrigan, S. Doherty, N.J. Taylor and A.J. Carty, Organometallics, 12 (1993) 993.